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FOREWORD

The primary focus of this research was to determine the effects of design and construction
features, such as overlay thickness and mix type, presence of milling, and type of restoration, on
pavement response and performance and to establish their importance in the prediction of future
performance of rehabilitated pavements. Long-Term Pavement Performance program Specific
Pavement Study (SPS)-5 and SPS-6 experiments provided information to obtain a better
understanding of the effects of design and construction features on pavement response and
performance of rehabilitated flexible and rigid pavements. The research findings provide
guidance to identify appropriate features and rehabilitation alternatives for different pavement
types and recommendations for improving data collection activities. The analyses results
obtained in this study help determine the causes of distress and formulate models for predicting
performance of rehabilitated pavements. Additionally, data from SPS-3 and SPS-4 experiments
were used to determine the effectiveness and timing of preventive maintenance treatments. The
findings suggest that it is possible to determine significant differences between treatment
alternatives with respect to pavement performance and treatment timing. Performance of
rehabilitated pavement sections from SPS-5 and SPS-6 were also examined using the
Mechanistic Empirical Pavement Design Guide and compared with the field performance.®
The results provide useful information about rehabilitated pavement section performance
predictions and recommendations for future model improvements.
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EXECUTIVE SUMMARY

The main goal of this project was to use Long-Term Pavement Performance (LTPP) Specific
Pavement Study (SPS) experiment data to assess the impact of different design, construction, and
rehabilitation features on pavement response and performance for specific site conditions. The
analysis sought to identify which features could help achieve the best short-term and long-term
performance and to evaluate the effectiveness of common maintenance practices used for
flexible and rigid pavements.

PREVENTIVE MAINTENANCE TREATMENTS

The findings of this study are based on the analysis of 81 SPS-3 flexible pavement sites and

34 SPS-4 rigid pavement sites subjected to different preventive maintenance treatments. Most of
the flexible pavement sites were monitored for at least 4 years, and approximately 22 percent of
the sites were monitored for 10 years or more. Most of the rigid pavement sites were monitored
for at least 4 years.

Of all SPS-3 treatments, thin overlay was the only effective alternative to mitigate and delay the
progression of roughness; however, it was effective only for pavements in freeze zones, high
traffic, or poor condition. It was found that thin overlays could only perform better relative to
roughness compared to other treatments if the International Roughness Index (IR1) level was
higher than 7.34 ft/mi (1.39 m/km). For lower IRI levels, the sections performed similarly and
independent of the treatment, and there was no advantage of applying thin overlays.

Thin overlays slowed the progression of rutting under all circumstances. Chip seal was more
effective than slurry seal in wet freeze zones but was only marginally more effective in dry
freeze zones. There were no significant differences among slurry seal, crack seal, and the

no treatment scenario with respect to rutting, as expected.

Thin overlays and chips seals were more effective than slurry seal and crack seal treatments in
mitigating fatigue cracking. Thin overlays performed better than most other treatments if the
pavement was in a freeze zone, in a wet climatic region, initially in poor condition as well as
subjected to high traffic. For fatigue cracking, thin overlays and chip seals outperformed the
other treatments, as well as the control section, when the initial cracking was lower than
232.13 ft’/mi (13.4 m¥/km). For higher levels of cracking, every treatment outperformed the
control section. Specifically, chip seals performed best, followed by thin overlays.

The data analysis from SPS-4 sites indicated that the joint/crack sealed sections and undersealed
sections performed similarly to the control sections. Also, no meaningful differences were found
between the two treatments. The analysis was based on a relatively small number of sites that
had 4 years of performance history that included recorded surveys with undersealing treatment.
While 34 sites were included in the survey measurements for joint/crack sealed sections, only
10 had data for undersealed sections.



REHABILITATED FLEXIBLE PAVEMENTS

The findings are based on the analysis of 18 SPS-5 rehabilitated flexible pavement sites, with a
total of 162 core test sections. Most of the sections were monitored for at least 9 years.

Rehabilitation strategies with milling prior to overlay provided better performance relative to
IRI levels for all site conditions. Moreover, strategies with thick overlays provided smoother
pavements for all site conditions. Design alternatives with new or recycled asphalt mixes had
equivalent performance when used under wet conditions; however, those with recycled asphalt
mixes provided smoother pavements when used in dry conditions. Traffic level and freeze
conditions did not affect pavement performance relative to roughness.

With respect to rutting, rehabilitation strategies with thin overlays performed better than thick
overlays in the short term. The ranking of best strategies was evenly distributed between the two
mix types (virgin and recycled asphalt). In the long term, the ranking of best strategies was more
evenly distributed for both thick and thin overlays. Rehabilitation strategies with virgin mixes
performed better in most of the sites, with the exception of pavements in fair surface condition
prior to rehabilitation and under freeze conditions, which corresponded to 33 percent of all sites.
Strategies with milling did not improve rutting performance more than alternatives without
milling. Surprisingly, the level of traffic did not affect rutting performance for the selected
rehabilitation strategies.

Short-term fatigue cracking performance was not significantly affected by any design feature
under any site conditions. This finding was expected because overlays are designed to minimize
fatigue cracking in the short term. Rehabilitation strategies with thick overlays provided better
performance for fatigue cracking for all site conditions that were evaluated. Strategies with
milling prior to overlay performed better to mitigate development and propagation of fatigue
cracking in all site conditions. In regions with a dry climate, alternatives without milling
performed as well as solutions with milling. Strategies with recycled asphalt mixes were better
ranked for sites with low traffic when evaluating fatigue cracking.

When comparing the alternatives evaluated and the overall performance for all types of load-
associated distress, overlay thickness was the most influential design feature. As expected, thick
overlays consistently performed better. The impact of thickness on performance was more
evident in the long term (more than 5 years) for most of the distresses. The exception was
rutting, for which no evidence was found, suggesting that either thin or thick overlays provided
less rutted pavements. The analysis of milling prior to overlay suggests that replacing the
distressed portion of the surface layer improved the performance for the majority of distresses
commonly observed in flexible pavements. The majority of sites did not show significant
differences in performance between sections overlaid with virgin and recycled asphalt mixes.
However, when differences existed, they were mostly in favor of virgin mixes.

For evaluation of structural responses, a maximum falling weight deflectometer (FWD)
deflection measured under the center of the load was used as a structural response indicator.
Rehabilitation strategies with thick overlays provided the lowest structural response independent
of site conditions. Strategies with recycled asphalt mix overlays had the smallest structural
deflections in freeze regions, while those with virgin mixes presented smaller deflections under



no-freeze conditions. Milling prior to overlay did not further impact the structural response. In
fact, in no-freeze zones, strategies without milling presented lower deflections. When comparing
wet and dry climates, pavement surface conditions, and traffic levels, none had a significant
impact on structural responses associated with each rehabilitation alternative.

As expected, rehabilitation strategies with thick overlays had lower maximum deflection values
compared to alternatives with thin overlays. There were no differences in pavement response
between strategies with virgin and recycled asphalt mix overlays. Strategies with milling prior
to overlay did not affect the structural response more than alternatives without milling.

REHABILITATED RIGID PAVEMENTS

Findings for rehabilitated rigid pavements are based on the analysis of 14 SPS-6 rehabilitated
rigid pavement sections, 8 jointed plain concrete pavement (JPCP) sections, and 6 jointed
reinforced concrete pavement (JRCP) sections. Most of the sections were monitored for at least
6 years. The results from the analysis are described separately for JPCP and JRCP sites.

With respect to JPCP structures, rehabilitation strategies with hot mix asphalt (HMA) overlays
provided significantly smoother pavements than treatments without overlays in both the short
term and long term. The best alternative to improve roughness performance was crack/break and
seat with an 8-inch (203-mm) overlay. This same alternative and minimum restoration with a
4-inch (102-mm) overlay (without crack/break) had statistically equivalent performances and
were found to be the best alternatives for most of the scenarios evaluated when both short-term
and long-term roughness performance were considered. Crack/break and seat with a 4-inch
(102-mm) overlay was among the worst alternatives to improve pavement performance relative
to roughness. Saw and seal provided similar performance to other 4-inch (102-mm) overlays.

Rehabilitation strategies without overlays were the best to mitigate cracking development and
propagation. HMA overlays over jointed concrete pavements exhibited more surface cracking
than alternatives without overlays. Crack/break and seat the JPCP had no significant effect in
reducing the amount of cracking because it performed similarly to the 4-inch (102-mm) overlays
over noncracked JPCP (with both minimum and maximum restorations). The three alternatives
without overlays, the no treatment scenario, minimum restoration, and maximum restoration,
were found to be the best choices to mitigate surface cracking for both short-term and long-term
performance. Crack/break and seat with 4-inch (102-mm) overlays was the best alternative
among those that involved overlays. The sawed and sealed joints did not deteriorate significantly
on these sections, and they effectively controlled reflection cracking.

When evaluating the impact of site conditions, different climate regions and surface conditions
did not have a significant impact on roughness and total cracking performance for the
rehabilitation strategies included in the SPS-6 JPCP experiment.

Similar to the findings for JPCP, JRCP strategies with HMA overlays improved roughness
performance, while strategies without overlays were better at improving total cracking
development and propagation. Rehabilitation strategies with overlays performed significantly
better when compared to treatments without overlays. Minimum and maximum restorations with



overlay were the best strategies to improve short-term performance for roughness. For long-term
performance, the best alternative was the crack/break and seat and the 8-inch (203-mm) overlay.

Rehabilitation strategies without overlays were the best when considering total cracking. Saw
and seal presented the highest surface cracking among all options evaluated; however, the
sawing may have had an impact on the monitoring process because this alternative remained in
reasonably good condition over time. Crack/break and seat the JRCP had no significant effect on
reducing the amount of cracking because it performed similarly to the 4-inch (102-mm) overlay
over noncracked JRCP (with minimum and maximum restoration). Sawing and sealing proved to
effectively control reflective cracking.

Deflections at the center of the slab and at the transfer joints were evaluated in this study. JPCP
and JRCP structures were evaluated independently. Sections that received HMA overlays were
monitored like flexible pavements, and deflections at the center of the lane were used in the
analysis. There were limitations due to the amount of data available, particularly after the data
were grouped by pavement structure type and surface condition.

The only analysis that provided statistically meaningful results was the evaluation of maximum
deflection at the center lane of overlaid JRCP structures. The results of that evaluation suggest
that crack/break and seat significantly increased the overall deflections measured on the
pavement surface. The remaining treatments provided equivalent maximum deflection
magnitudes. This was expected since crack/break and seat was an alternative in which the
concrete slab was reduced to smaller pieces, resulting in lower stiffness. This process increased
the maximum deflection at the center of the slab.

FINDINGS FROM MEPDG ANALYSES

The Mechanistic Empirical Pavement Design Guide (MEPDG) analysis was used to compare
MEPDG-predicted performance of rehabilitated pavement sections with field measured data to
verify current calibration for rehabilitated pavement structures.®)

The roughness models for flexible and rigid pavements provided good estimates for rehabilitated
sections with and without HMA overlays, and some bias was identified. The model has a
tendency to underpredict roughness for rigid pavement sections with IRI values above 9.50 ft/mi
(1.8 m/km). This bias is more characteristic of sections located in dry and freeze regions, and it
could be addressed by calibrating the models for local conditions.

The rutting model needs further enhancement to more accurately predict permanent deformation
for HMA overlays over flexible and rigid pavements. The model underpredicts rutting of HMA
overlays over crack/break and seat restored rigid pavements and overpredicts for HMA overlays
with saw and seal and for minimum and maximum restorations prior to overlays.

The cracking models for HMA overlays, particularly the empirical reflection cracking, need
further enhancement to provide more accurate estimates for rehabilitated sections. The models
for fatigue cracking (new and reflective) and longitudinal cracking were very accurate for
estimating consistent and comparable performance with measured values. MEPDG did not
predict transverse cracking in any of the SPS-5 or SPS-6 sections, even though some transverse
cracking was measured during surveys.



CHAPTER 1. INTRODUCTION

BACKGROUND

Rehabilitation represents the majority of pavement design and construction activity in the
United States, and the importance of improving the rehabilitation process cannot be
overemphasized. It is well known that in addition to site conditions (e.g., traffic level, climatic
conditions, subgrade support, drainage, etc.), the performance of rehabilitated pavement sections
depends on the condition and design of the existing pavement, including any prerehabilitation
measures to improve the existing structure.

Current pavement rehabilitation design procedures are based mainly on the American
Association for State Highway and Transportation Officials (AASHTO) Guide for Design of
Pavement Structures that uses limited performance models developed from the AASHTO road
test in the late 1950s.) The recently developed MEPDG reflects the state of the art in pavement
design and is considered a significant improvement over the Guide for Design of Pavement
structures.? However, gaps still exist in the knowledge base, particularly for rehabilitated
pavements, and the mechanistic design methods still are supported by empirical relationships and
judgments made by the designer (e.g., determining the representative response properties of a
surface layer that exhibits a moderate level of distress).

One of the most critical aspects of MEPDG analysis for rehabilitated pavements is the
characterization of existing pavement conditions prior to rehabilitation. Collection of reliable
data is imperative because all major decisions regarding existing pavement problems and feasible
rehabilitation alternatives depend on the accuracy and integrity of these data.

More importantly, relatively few of the rehabilitation sections from the LTPP program were
included in the calibration of MEPDG compared to what is currently available. Many of the test
sections were missing data considered mandatory for the calibration process, and many sections
in the SPS experiments exhibited little distress because those projects were less than 5 years old.
Most of this missing data are now available on the LTPP database, and most of the SPS projects
are at least 10 years old and are starting to exhibit moderate levels of distress. As a result, more
data are now available and can be used to evaluate the empirical and subjective relationships.
LTPP performance data can also be used to recommend improvements to the MEPDG
rehabilitated pavement analysis and design procedures.

Because of continued data collection and improvements over time, LTPP collected information
on test sections that included a variety of rehabilitation and preservation strategies. Because of
additional data available in the LTPP database, researchers have a better understanding of

the effects of design and construction features on pavement response and performance of
rehabilitated flexible and rigid pavements. These data were used in the analyses conducted in this
study to examine the causes of distress. The information obtained in this study can be used to
formulate improved models predicting performance of rehabilitated pavements for eventual use
in MEPDG. In addition, the data collected and assembled during the study can be used to
improve existing MEPDG calibration and validation. This project also offers a unique
opportunity to evaluate MEPDG global calibration factors for rehabilitated pavements.



The results of this research enhance existing knowledge related to rehabilitation design in three
primary areas: (1) the relationship between pavement design and construction features and
pavement response and performance, (2) guidance for identifying appropriate rehabilitation
treatments and features for different pavement types, and (3) recommendations for improving
LTPP data collection activities and future MEPDG model improvements. In addition, preventive
maintenance alternatives were evaluated in this study, and guidance on selecting effective
preventive maintenance treatments was developed based on findings from the SPS-3 and

SPS-4 experiments.

PROJECT OBJECTIVES

The objectives of this project were to use SPS experiment data to determine the following for
specific site conditions:

e The impact of the different design, construction, and rehabilitation features on
pavement response.

e The contributions of these features to achieve different levels of pavement performance.
e The effectiveness of specific maintenance options for new flexible and rigid pavements.

More specifically, these objectives translate into practical conclusions to respond to the
following questions:

e Which design/treatment alternative generally performs better for each type of
existing pavement?

e Which design/treatment alternative performs better in the short term (5 years for SPS-5
and SPS-6)?

e Which design/treatment alternative performs better in the long term (10 years for SPS-5
and SPS-6)?

e Which design/treatment alternative performs better in each climatic region?
e Which design/treatment alternative performs better for low and high traffic volumes?
e Does preconstruction activity affect design/treatment alternative performance?

e Are MEPDG distress and roughness predictions biased for different traffic levels,
climatic conditions, or pavement types?

Practical findings obtained from this study will help highway engineers and managers make
improved pavement design, construction, and rehabilitation decisions.



REPORT ORGANIZATION

This report documents findings from the investigation of the impact of design features on
pavement response and performance in rehabilitated flexible and rigid pavements. The
information presented in this report is organized into eight chapters and five appendices.






CHAPTER 2. LITERATURE REVIEW

SUMMARY OF FINDINGS FROM PREVIOUS STUDIES

The goal of the literature review was to identify available reports on the response and
performance of rehabilitated flexible and rigid pavements and to summarize findings relevant to
the objectives of the current study.

The Federal Highway Administration (FHWA) and the National Cooperative Highway Research
Program (NCHRP) have sponsored numerous studies to assess LTPP SPS experiment statuses,
construction adequacies, and key data element availability (e.g., traffic, subgrade, materials,
monitoring, etc.) and to conduct preliminary analyses of the collected data. This chapter contains
a summary of findings from previous investigations related to the effect of key design and
construction features and site conditions on performance of flexible and rigid rehabilitated
pavements. The literature review findings are presented in table 1 through table 6.

The literature review findings provide information on the following topics:
e Key measures of pavement performance (distresses, roughness, etc.).

e Previously identified design factors affecting structural responses and
pavement performance.

e Previously identified construction factors affecting structural responses and
pavement performance.

e Previously identified site conditions affecting pavement performance.

e Effects of prerehabilitation pavement conditions and treatments on rehabilitated
pavement responses and performance.

e Optimum timing of preventive maintenance treatments.



Table 1. Rehabilitation of flexible pavements.

Publication

Major Findings

Current Study Relevance: Performance Measures

Performance of Rehabilitated
Asphalt Concrete Pavements in the
LTPP Experiments—Data
Collected Through February
1997(FHWA-RD-00-029)®

Nonwheel-path longitudinal cracking was the most prevalent distress in the
early period (SPS-5).

Fatigue cracking was the least observed distress (SPS-5).

Nonwheel-path longitudinal cracks exceeded wheel-path longitudinal cracks
(general pavement study (GPS)-6).

GPS-6 data showed that fatigue cracking and longitudinal cracking in the
wheel path are related. Specifically, the longitudinal cracking in the wheel
path will propagate or evolve into fatigue cracking with continued

traffic loading.

Rehabilitation of Asphalt Concrete
Pavements—Initial Evaluation of
the SPS-5 Experiment (FHWA.-
RD-01-168)"

Four performance indicators were established: fatigue cracking, transverse
cracking, rutting, and IRI.

Fatigue cracking occurred most frequently on older sections.

Transverse cracking occurred in all but four of the projects, all of which were
less than 7 years old.

Older sections showed moderate severity of transverse cracks even in a
no-freeze climate.

Test sections with extensive transverse and fatigue cracking had high IRIs.

LTPP Data Analysis: Effectiveness
of Maintenance and Rehabilitation
Options Web Document 47
(Project 20-50(3/4))®

All SPS-5 overlay treatments reduced long-term roughness relative to the
nonoverlaid sections.

The rutting data from the SPS-5 and GPS-6B experiments indicated that on
average, about 0.2 inches (6 mm) of rutting developed in the first year after
placement of an asphalt overlay of an asphalt pavement.

Design Factors

Performance of Rehabilitated
Asphalt Concrete Pavements in the
LTPP Experiments—Data
Collected Through February 1997
(FHWA-RD-00-029)®

The nominal 5-inch (127-mm) overlays generally showed better performance
than the nominal 2-inch (5I-mm) overlays, as expected (SPS-5).

The thicker overlays generally exhibited less cracking distress than the thinner
ones but had little effect on the occurrence of rutting and no apparent effect on
roughness (SPS-5).

The different type of mixtures (virgin or recycled asphalt concrete (AC))
appeared to have the least effect on performance of any of the factors included
in this experiment (SPS-5).

There was no advantage to using virgin versus recycled mixtures in reducing
the number of transverse cracks.

Compared to virgin mixes, recycled AC mixtures resisted longitudinal
cracking outside the wheel path substantially better in at least five projects.
Thicker pavement performed better (GPS-6).

The thickness of the pavement was conversely correlated with the extent of
nonwheel-path longitudinal cracks (GPS-6).

Neither the age nor the condition of the pavement before the overlay seemed
to be critical to cracking extent (GPS-6).

Thicker overlays resisted rutting slightly better than thinner ones (GPS-6).

AC mix properties were the most significant factors to limit rutting (GPS-6).
Thicker overlays offered a slight advantage for roughness (GPS-6).

GPS-6A (existing AC overlays on AC pavements) data showed that overlay
designs that provided pavement structure consistent with traffic expectations
can be expected to perform well for more than 10 years.
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Rehabilitation of Asphalt Concrete
Pavements—Initial Evaluation of
the SPS-5 Experiment (FHWA.-
RD-01-168)"

Overlay thickness did not appear to have a strong effect on the occurrence
of longitudinal cracking in the wheel path and rutting (5 years after
rehabilitation).

There was no apparent effect of overlay thickness on roughness based on
these early observations (5 years after rehabilitation).

Age of overlay was found to be the leading contributing factor to four of the
six distresses studied in the SPS-5 experiment (rehabilitation of AC
pavements): fatigue cracking, rutting, transverse cracking, and initial
pavement smoothness.

LTPP Data Analysis: Effectiveness
of Maintenance and Rehabilitation
Options (Project 20-50(3/4))®

Overlay thickness and preoverlay roughness level were the two factors that
most influenced the performance of asphalt overlays of asphalt pavements in
the SPS-5 experiment with respect to roughness and fatigue cracking.

No significant mean differences were detected in long-term roughness,
cracking, and rutting between recycled mixes versus virgin mixes.

No significant mean differences were detected in long-term rutting between
minimal versus intensive preparation or thin versus thick overlays.
Preoverlay cracking, age, and accumulated traffic loads significantly
correlated to the difference in long-term cracking in nonoverlaid versus
overlaid sections.

Reducing Flexible Pavement
Distress in Colorado Through the
Use of PMA Mixtures®

Projects using modified HMA mixtures were found to have lower amounts of
fatigue cracking, transverse cracking, and rutting.

The use of modified HMA mixtures was found to extend the service life of
HMA overlays by about 3 years, a 30 percent increase over the 10-year
design life.

Construction Factors

Performance of Rehabilitated
Asphalt Concrete Pavements in the
LTPP Experiments—Data
Collected Through February 1997
(FHWA-RD-00-029)®

The test sections that had received intense surface preparation (patching and
milling) prior to placement of the overlays generally performed better than test
sections that had not. Reduced fatigue cracking, reduced longitudinal cracking
in the wheel paths, and reduced transverse cracking were observed on
intensely prepared sections.

The amount of transverse cracking was dependent on the original pavement
condition before overlay placement. The overlays placed on pavements
classified in good condition exhibited less transverse cracking than on
pavements classified in poor condition.

No substantial difference was noted between longitudinal cracking outside the
wheel paths, rutting, and roughness between the test sections with and without
milling (SPS-5).

Rutting was not affected by or related to the condition of the original
pavement or age of the overlay (GPS-6).

The condition of the original pavement prior to overlay appeared to have little
effect on the occurrence of or increase in roughness (GPS-6).

The amount of traffic affected the growth of roughness (GPS-6).

Rehabilitation of Asphalt Concrete
Pavements—Initial Evaluation of
the SPS-5 Experiment (FHWA.-
RD-01-168)"

Fewer or shorter transverse cracks occurred on sections that had been milled.
According to an analysis of variance (ANOVA), milling depth had an
important effect on the length of transverse cracks.

The IRI values of the overlay were lower for the overlays placed over
pavements in the fair category and when the existing surface was milled
before overlay.
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LTPP Data Analysis: Effectiveness
of Maintenance and Rehabilitation
Options (Project 20-50(3/4))®

Asphalt pavements overlaid when rougher tended to have somewhat

more initial roughness after overlay than asphalt pavements overlaid

when smoother.

There was no significant mean difference in long-term roughness between
overlays with minimal versus intensive preoverlay preparation.

No significant mean differences were detected in long-term cracking between
minimal versus intensive preparation.

Site Factors

Rehabilitation of Asphalt Concrete
Pavements—Initial Evaluation of
the SPS-5 Experiment®

The age of the overlay and the climatic factors temperature and moisture had a
significant effect on fatigue cracking.

More fatigue cracking occurred on test sections in a climate with less
precipitation but higher freeze indices.

Longer transverse cracks occurred on the older pavements in areas with higher
freeze indices.

Freeze index had an effect on the length of transverse cracks.

The age of the overlay and precipitation had an effect on rut depth. Sections
with increased precipitation had larger rut depths.

The age of the overlay, condition of the pavement before overlay placement,
and surface preparation or milling depth were important factors relative to the
IRI values.

Milling offered no consistent advantage for resisting longitudinal cracking
outside the wheel path during the early life of an overlay.

LTPP Data Analysis: Effectiveness
of Maintenance and Rehabilitation
Options (Project 20-50(3/4))®

Overlay age and average annual precipitation had a significant effect on long-
term rutting.

A significant correlation was detected between average annual precipitation
and the difference in long-term rutting in 2-inch (51-mm) versus 5-inch
(127-mm) overlays.
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Table 2. Rehabilitation of rigid pavements.

Publication

Major Findings

Current Study Relevance: Design Factors

LTPP Data Analysis: Effectiveness
of Maintenance and Rehabilitation
Options (Project 20-50(3/4))®

e The effectiveness of the rigid pavement rehabilitation treatments in the

SPS-6 experiment can be ranked from most to least effective with
respect to IRI, rutting, and cracking as follows: (1) 8-inch (203-mm)
overlay of cracked/broken and seated pavement, (2) 4-inch (102-mm)
overlay of either intact or cracked/broken and seated pavement with or
without sawing and sealing of transverse joints and with minimal or
intensive preoverlay repair, (3) concrete pavement restoration with
diamond grinding, full-depth repair, and joint and crack sealing, and
(4) concrete pavement restoration without diamond grinding but with
full-depth repair and joint and crack sealing.

Subdrainage retrofitting, undersealing, and/or load transfer restoration
techniques did not produce significantly lower long-term roughness
levels compared to sections that received only diamond grinding, full-
depth repair, and joint and crack sealing.

Rehabilitation of Jointed Portland
Cement Concrete Pavements:
Initial Evaluation and Analysis
(FHWA-RD-01-169)")

The rehabilitation techniques in exposed Portland cement concrete
(PCC) involve restoration techniques other than overlay including full-
depth repair, diamond grinding, joint sealing, and addition of retrofitted
edge drains.

o If the prerehabilitated section has significant roughness, diamond
grinding should be considered or the section will retain its roughness.
Full-depth repairs do not remove significant roughness from a
jointed concrete pavement by themselves.

e Both routine and premium pavement preparation treatments reduce
the amount of transverse cracking immediately after rehabilitation.
Routine preparation treatment includes limited patching, crack repair
and sealing, and stabilization of joints. Premium preparation
treatment includes subsealing, subdrainage, joint repair and sealing,
full-depth repairs with restoration of load transfer, diamond grinding,
and shoulder rehabilitation.

e Premium pavement preparation with diamond grinding reduces the
amount of faulting to zero immediately after rehabilitation.

AC overlay of nonfractured PCC rehabilitation technique involves

applying varying degrees of preoverlay repairs and placing an

AC overlay.

e The AC overlay of nonfractured PCC reduces the roughness
immediately after rehabilitation to a smooth level (5.28 ft/mi
(2.0 m/km)).

e The sections with AC overlay of nonfractured PCC exhibit a faster
increase in IRI over time than does the fractured PCC.

e The sections with AC overlay of nonfractured PCC exhibit a lower
increase in IRI over time than do premium preparation nonoverlaid
PCC sections.

e The routine and premium preparation sections with 4-inch (102-mm)
AC overlays exhibited no reflective cracking within the first year
after construction.
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Design Versus Built VVariations

Rehabilitation of Jointed Portland
Cement Concrete Pavements:
Initial Evaluation and Analysis
(FHWA-RD-01-169)")

Sites in South Dakota, Arizona, and California did not meet the annual
precipitation requirement for the climate they were considered for.
Sites in Tennessee, Oklahoma, and California did not meet the freeze
index requirement for the climate they were considered for.

Four sites fell short on the required age criteria.

A total of 45 percent of sites did not have an AC overlay thickness
within the designed range.

Performance Measures

LTPP Data Analysis: Effectiveness
of Maintenance and Rehabilitation
Options (Project 20-50(3/4))®

The rutting data from the SPS-6 (rehabilitation of jointed PCC

pavements) and GPS-7B (new AC overlays on PCC pavements)

experiments indicate that on average, 0.24 inches (6 mm) of rutting

developed in the first year after placement of an AC overlay of either an

intact or a cracked/broken and seated concrete pavement. This may be

due to compaction of the AC overlay by traffic and appears to be

independent of the overlay thickness, mixture type, preoverlay

preparation, and preoverlay rutting level.

No significant differences were detected in cracking based on 8 years of

data as follows:

e Between minimal (i.e., without milling) and intensive (i.e., with
milling) preoverlay preparation.

e Between sections with and sections without sawed and sealed joints.

e Between 4-inch (102-mm) overlays with sawed and sealed joints
versus those over cracked/broken and seated pavements.

e Between 4-inch (102-mm) and 8-inch (203 mm) overlays of
cracked/broken and seated pavements.

In 4-inch (102-mm) AC overlays of intact slabs, no significant

differences were detected in roughness based on 6 years of data

as follows:

e Between minimal and intensive preoverlay preparation.

e Between sections with and without sawing and sealing of
transverse joints.

o Between overlays with sawed and sealed joints and overlays of
cracked/broken and seated slabs.

e Among overlays of cracked/broken and seated slabs, the 8-inch
(203 mm) overlays had significantly lower long-term roughness than
the 4-inch (102-mm) overlays, as expected.
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Table 3. Preventive maintenance of flexible pavements.

Publication

Major Findings

Current Study Relevance: Design Factors

The LTPP Experiment SPS-3
5-Year Data Analysis
(FHWA-RD-97-102)®

Structural adequacy did not have a significant effect on the performance of
SPS-3 treatments.

Thin overlay had a significant effect in rutting and roughness reduction, while
other treatment options were either slightly effective or not effective.

LTPP Data Analysis:
Effectiveness of Maintenance
and Rehabilitation Options
(Project 20-50(3/4))®

In the SPS-3 thin overlay sections, pavement age was the only factor studied
that was found to be significantly correlated to the rate of rutting.

In the SPS-3 crack sealed and chip sealed sections, average annual
precipitation was the only factor studied found to significantly correlate to the
rate of rutting.

Analysis Approach

The LTPP Experiment SPS-3
5-Year Data Analysis
(FHWA-RD-97-102)®

This report provides multiple regression models to develop prediction models
for cracking, rutting, ride quality, friction, and pavement rating score.

Pavement Maintenance
Effectiveness (SHRP-H-
358)®

This study developed a damage modeling approach with an index varying
between zero and 1. The index is dependent on accumulated traffic/age,
expected traffic/age to failure, and the shape of the performance trend.

LTPP Maintenance and
Rehabilitation Data Review
(FHWA-RD-01-019)"%

This report documents a survival analysis of SPS-3 sites in the Southern LTPP
region in 1999 to obtain life expectancy of each treatment, effect of timing, and
the benefit of treatment to the life span of the pavement.

Treatment Performance

LTPP Maintenance and
Rehabilitation Data Review
(FHWA-RD-01-019)"%

After 6 years of service, sections that received maintenance when in poor
condition had a probability of failure twice as much as sections initially in fair
or good condition.

Sections in fair and good condition had about the same probability of failure.
The overall median survival times for thin overlay, slurry seal, and crack seal
were 7, 5.5, and 5.1 years, respectively.

A median survival time for chip seal could not be determined because fewer
than 50 percent of these sections had failed at the time of the analysis. Chip
seals outperformed thin overlay, slurry seal, and crack seal treatments with
respect to controlling the reappearance of distress.

LTPP Data Analysis:
Effectiveness of Maintenance
and Rehabilitation Options
(Project 20-50(3/4))®

In terms of roughness, rutting, and fatigue cracking, the most effective of the
maintenance treatments was the thin overlay treatment, followed by the chip
seal treatment, and then the slurry seal treatment.

The thin overlay treatment was the only one of the four SPS-3 maintenance
treatments to produce an initial small reduction in roughness, and the only one
of the four to have a significant effect on long-term roughness, relative to the
control sections.

For the SPS-3 test sections, the thin AC overlay treatment was the only one of
the four treatments (thin AC overlays, chip seals, slurry seals, and crack seals)
that showed a significant initial effect on rutting. Thin AC overlays also had
the most significant effect on long-term rutting control.

For rougher pavements, there was some evidence that chip seals and slurry
seals also had some effect on long-term roughness, rutting, and cracking
relative to the control sections.

Crack seals did not have any significance on long-term roughness, rutting, or
fatigue cracking.
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Pavement Treatment
Effectiveness, 1995 SPS-3
and SPS-4 Site Evaluations
National Report (FHWA-
RD-96-208)*"

The thin AC overlay treatments performed best after 5 years.

In general, chip seal treatments also performed well. Chip seal performance
was best in the Southern region, which has a predominantly wet no-freeze
environment.

The crack seal treatment performed very well in wet freeze environments
where the wide shallow sealant reservoir was routed. Crack seal performance
in the other two regions was not as successful.

LTPP Pavement Maintenance
Materials: SHRP Crack
Treatment Experiment
(FHWA-RD-99-143)?)

The most cost-effective treatments for crack seals are usually those consisting
of rubberized asphalt placed in a standard or shallow-recessed band-aid
configuration. The standard recessed band-aid method showed the longest
estimated service life, followed very closely by the shallow recessed band-aid
method.

For long-term crack-seal performance (5 to 8 years) under the condition where
0.1 t0 0.2 inches (2.5 to 5.0 mm) of horizontal crack movement occurred, a
modified rubberized asphalt sealant should be installed in either a standard or a
shallow recessed band-aid configuration.

Design Versus Built Variations

LTPP Data Analysis:
Effectiveness of Maintenance
and Rehabilitation Options
(Project 20-50(3/4))®

The review of construction problems and deviations in the SPS-3 experiment
illustrated that more than 40 percent of the sites had problems in the
application of maintenance treatments, mostly chip seal.

Treatment Timing

Pavement Treatment
Effectiveness, 1995 SPS-3
and SPS-4 Site Evaluations
National Report (FHWA-RD-
96-208 Y

The question of timing cannot be resolved completely from the visual
observation of the SPS-3 sites, but indications are that earlier application of the
preventive maintenance treatments provides greater benefits than later
application.
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Table 4. Preventive maintenance of rigid pavements.

Publication

| Major Findings

Current Study Relevance: Performance Measures

LTPP Data Analysis:
Relative Performance of
Jointed Plain Concrete
Pavement with Sealed and
Unsealed Joints (NCHRP
Web Document 32 Project
20-50(2))*?

e Joint spalling was quantified by several measures, including percentage of
joints spalled within a pavement section, total length of joint spalling,
percentage of total joint length spalled, and percentage of individual joint
length spalled. In addition, weighted measures were used that take into account
the severity of joint spalling as characterized by low-, medium-, and high-
severity joint spalling.

e The faulting measure employed in most previous analyses of LTPP concrete
pavement performance is average joint faulting, as measured in the outer wheel
path. In addition, average absolute faulting was introduced in the study to
account for negative faulting (the approach slab edge being lower than the
leave slab edge). Absolute average faulting is calculated as the arithmetic
average of the absolute values of the individual joint faulting measurements.

e An index of weighted sealant damage was developed to quantify overall
transverse joint sealant condition as a weighted average of the numbers of
joints within the section with low, medium, and high sealant damage ratings.

Treatment Performance

LTPP Data Analysis:
Relative Performance of
Jointed Plain Concrete
Pavement with Sealed and
Unsealed Joints (NCHRP
Web Document 32 Project
20-50(2))")

e Based on 5 years of data collected at the five test sites built in Arizona,
Colorado, and Utah (all in the dry region), the effects of sealed and unsealed
joints on spalling were similar.

Pavement Treatment
Effectiveness, 1995 SPS-3
and SPS-4 Site Evaluations
National Report (FHWA-RD-
96-208)*Y

e SPS-4 sealed joint sections performed better than unsealed sections.

e Unsealed joints also had significantly more joint spalling than the sealed joint
sections.

e Unsealed joints in the control sections contained significantly more debris than
sealed joint sections.

Concrete Pavement
Maintenance Treatment
Performance Review: SPS-4
5-Year Data Analysis
(FHWA-RD-97-155)®

¢ No significant differences were identified between the control sections
(unsealed) and the sealed-joint or undersealed (slab stabilization) sections. This
observation was based on the 32 SPS-4 sites.

e Based on 5 years of data collected in Arizona, Colorado, Nevada, and Utah, no
significant differences in initial pavement smoothness were identified among
the three treatments consisting of sealed, undersealed, and unsealed joints in
the SPS-4 experiment.

¢ Inthe analysis of SPS-4 performance through 1995, no significant differences
were detected in IRI or joint faulting between sealed-joint and unsealed-joint
sections.

Design and Construction of
PCC Pavements, Volume 1:
Summary of Design Features
and Construction Practices
that Influence the
Performance of Pavements
(FHWA-RD-98-052)™

¢ Neither presence nor type of sealant was found to be significant in the
regression analysis of JPCP joint faulting in the GPS-3 experiment.

Common Characteristics of
Good and Poorly Performing
Pavements (FHWA-RD-97-
131)10

¢ In statistical analyses of GPS-3 performance data, neither sealant presence or
sealant type was found to be a significant variable in the prediction of dowelled
or undowelled joint faulting in JPCP.
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LTPP Pavement Maintenance
Materials: SPS-4
Supplemental Joint Seal
Experiment (FHWA-RD-99-
151)47

e A comparison of joint sealant types among the SPS-4 supplemental test

sections built in Arizona, Colorado, Nevada, and Utah between 1990 and 1995
showed that silicone seals outperformed the other two treatments for transverse
joint seals (compression seals and hot pours).

Table 5. Optimal timing of preventive maintenance.

Publication

Major Findings

Current Study Relevance: Review of Previous Studies

Optimal Timing of Pavement
Preventive Maintenance
Treatment Applications
(NCHRP Report 523)*#)

Several studies researched the issue of optimum timing of the preventive
maintenance treatments to achieve best maintenance effectiveness. These
included earlier studies of SPS-3 and SPS-4 experiments and State
transportation department studies in Arizona, lowa, Montana, Texas, and
South Dakota. None of these studies was successful in identifying the optimum
timing of preventive maintenance treatments.

Treatment Timing

Optimal Timing of Pavement
Preventive Maintenance
Treatment Applications
(NCHRP Report 523)*)

A methodology was developed to determine the optimal timing for the
application of preventive maintenance treatments to flexible and rigid
pavements. The methodology was based on the analysis of pavement
performance and costs associated with maintenance treatment. It assessed the
effectiveness of a particular preventive maintenance treatment in terms of both
the benefit it provided and the cost required to obtain that benefit. The benefit
was defined as the quantitative influence on pavement performance as
measured by pavement condition factors. Condition indicators may be
expressed by such measures as IRI, present serviceability index, or other
custom-defined measure of pavement performance. The optimum application
of a preventive maintenance treatment occurred at the point at which the
benefit per unit cost was greatest.

SPS-3 and SPS-4 Data Applicability

Optimal Timing of Pavement
Preventive Maintenance
Treatment Applications
(NCHRP Report 523)*8

One of the case studies conducted under NCHRP Project 14-14 was a review
of the data from LTPP SPS-3 and -4 experiments.®® The conclusion from that
case study was that LTPP data at that time could not be used to conduct the
analysis of optimal timing. The reasons provided in the report include the
counterintuitive performance trends, no improvement in performance as a
result of treatment application, and not enough sections with treatments applied
at different ages that exhibited the expected trends to support the analysis.
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Table 6. Data availability for SPS-3, SPS-4, SPS-5, and SPS-6 experiments.

Publication

Major Findings

Preliminary Evaluation and
Analysis of LTPP Faulting
Data— Final Report
(FHWA-RD-00-076)“%

Data analysis was performed to determine the usefulness of joint faulting and
related data in identifying factors that affect joint faulting. As part of this study,
an assessment of data availability and data quality was performed for the
SPS-4 experiment. Data for a total of 422 jointed concrete pavement sections
were available in the LTPP Information Management System (IMS) database
at the time of the study. Of these, only 307 sections had records in the faulting
data table MON_JPCC_FAULT, for a total of 24,108 records.

Rehabilitation of Asphalt
Concrete Pavements: Initial
Evaluation of the SPS-5
Experiment (FHWA-RD-01-
168)“

The data availability and completeness were good overall for the SPS-5
experiment with two exceptions: traffic and materials test data. These data
deficiencies should be addressed before a comprehensive analysis of the SPS-5
experiment is conducted. Both of these data elements must be collected in
order for the SPS-5 experiment to meet the expectations for calibrating and
validating mechanistic models.

Rehabilitation of Jointed
Portland Cement Concrete
Pavements: SPS-6—
Initial Evaluation and
Analysis (FHWA-RD-01-
169)"

Data availability and completeness for the SPS-6 experiment are good overall,
but some data, such as traffic, climatic, and materials data, were not yet
available in the IMS database. Three of the 14 sites were still relatively new
and, therefore, did not have much data available. It was believed that the
information was collected and in the process of being entered into the IMS
database.

LTPP Data Analysis:
Effectiveness of Maintenance
and Rehabilitation Options
(Project 20-50(3/4))®

The data used in this research were the data available at all quality levels in
LTPP data release 11.5 dated June 13, 2001.

Efforts to analyze the SPS-3 experiment were hampered by data availability
problems and the short times in which the treatments had been in service.

In both the SPS-5 and -6 experiments, the long-term rutting data were so
erratic that analysis of long-term trends was problematic.

LTPP Maintenance and
Rehabilitation Data Review
(FHWA-RD-01-019)"%

This publication provides a review of maintenance and rehabilitation data
elements across all the experiments for data completeness and anomalies. The
test sections were divided into three categories based on surface type: HMA,
jointed concrete pavement, and continuously reinforced concrete pavement.
The study was based on the 1999 third quarter LTPP data release. There were a
total of 757 type sections, including SPS and GPS, for which maintenance and
rehabilitation techniques have been documented in the database.
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CHAPTER 3. OVERVIEW OF LTPP MAINTENANCE AND REHABILITATION
EXPERIMENTS

INTRODUCTION

Data from LTPP SPS-5 and SPS-6 experiments provided information to gain an understanding of
the effects of design and construction features on pavement response and performance of
rehabilitated flexible and rigid pavements. In addition, SPS-3 and SPS-4 experiments contain
pavement performance data collected over the years for the sections subjected to different
preventive maintenance treatments. The data from these experiments were used as primary data
source for this study as follows:

e SPS-3: Maintenance treatments for flexible pavements.
e SPS-4: Maintenance treatments for rigid pavements.

e SPS-5: Rehabilitation of AC pavements.

e SPS-6: Rehabilitation of jointed concrete pavements.

SPS-3 and SPS-4 experiments were constructed in 1990 to evaluate the effectiveness of and to
determine the optimum timing for applying preventive maintenance treatments for flexible and
rigid pavements. SPS-5 and SPS-6 experiments provide critical information to support pavement
rehabilitation decisions. The primary objective of these experiments was to develop conclusions
concerning the effectiveness of rehabilitation techniques and strategies and their contribution to
pavement performance and service life.

SPS-3 EXPERIMENT
Experimental Design

An experimental design for SPS-3 was developed to help determine the impact of important
factors on the pavement performance changes caused by selected preventive maintenance
treatments. Major factors included environment, traffic, subgrade type, structural capacity, and
condition prior to treatment for the test sections applied to flexible pavements.

At each site, SPS-3 examined the performance of four preventive maintenance treatments on
flexible pavement sections: thin overlay, slurry seal, crack seal, and chip seal. The experiment
design stipulated that the effectiveness of each of the four treatments be evaluated independently.
The effectiveness of combinations of treatments was not considered; therefore, each test site
included the following four treated test sections in addition to a control section:

e Thin overlay.

e Slurry seal.

21



e Crack seal.
e Chip seal.
SPS-3 Sections

SPS-3 experiments were initiated at 81 sites in the United States and Canada in 1990 and 1991.
In many cases, these sites were linked to a GPS section that served as a control section. Most of
these GPS control sections were from the GPS-1, GPS-2, and GPS-6 experiments.

The sections with thin overlays were nominally 1.5 inches (38.1 mm) thick and were placed
by State and Provincial highway agencies using their own AC mixes. The slurry seals and chip
seals were placed by four different contractors, one from each LTPP region. The material
specifications were the same for all four regions. Crack sealing was executed by four different
crews—one from each LTPP region. The material used for crack sealing was the same for all
sites in all regions, but crack sealing application procedures varied.

A summary of SPS-3 sites and conditions is provided in table 7. The climate condition was
defined based on the freeze index and average rainfall for each site. Sites with an average annual
rainfall greater than 39 inches (1,000 mm) were classified as wet, and those with less than

39 inches (1,000 mm) of rain were catalogued as dry. Similarly, the sites with a freeze index
greater than 140 °F (60 °C) were classified as a freezing climate and those with a freeze index
less than 140 °F (60 °C) were designated as a no-freeze climate. By March 1, 2006, all SPS-3
sites were deassigned from the experiment, and data collection stopped. The LTPP database
contains information for 370 core SPS-3 sections.
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Table 7. SPS-3 categorization.

Wet
Freeze No-Freeze
Condition at Fine Subgrade Coarse Subgrade Fine Subgrade Coarse Subgrade
Beginning of Low High Low High Low High Low High
Experiment Traffic Traffic Traffic | Traffic | Traffic Traffic Traffic Traffic
21-A300 26-C300 5-A300 | 47-B300
Good 24-A300 27-A300 48-F300 | 48-A300
42-B300 29-B300 48-1300
17-A300 36-B300 28-A300
19-A300 | 18-A300 47-A300 | 47-C300 1-A300
Fair 21-B300 | 26-B300 48-H300 | 40-C300 1-C300
26-D300 40-B300
48-G300
51-A300 | 17-B300 | 36-A300 48-B300 | 53-C300 1-B300
87-A300 | 27-B300 | 42-A300 12-B300
Poor 87-B300 | 27-D300 | 89-A300 12-C300
29-A300 26-A300
27-C300
Dry
16-A300 16-B300 | 48-K300 48-J300 | 48-D300
Good 49-C300 48-A300 | 48-M300
16-C300
83-A300
Fair 30-A300 56-A300 | 32-B300 | 48-Q300 4-D300
31-A300 6-A300 | 32-C300 | 48-E300 48-N300
20-B300 | 90-A300 | 56-B300 | 53-A300 40-A300 4-A300
8-A300 49-A300 | 90-B300 4-B300
Poor 20-A300 49-B300 4-C300
8-B300 32-A300 48-1.300
53-B300

Note: The numbers in each cell represent the State code followed by the site ID. Blank cells indicate that data are not available.

SPS-4 EXPERIMENT

Experimental Design

The purpose of the SPS-4 experiment was to assess the effects of selected rigid pavement

maintenance treatments, joint/crack sealing, and joint undersealing on performance relative to

the performance of untreated control sections. The experiment design stipulated that the
effectiveness of each of the two treatments be evaluated independently at each SPS-4 site.

The experimental design for the main SPS-4 experiment incorporated the same primary

experimental factors as in the GPS experiments: climatic zone, subgrade type, and traffic level.
The original experimental design for SPS-4 included two second-level factors: type of subbase
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(granular or stabilized) and condition at the time of treatment (good, fair, or poor). The following
maintenance treatments were considered:

e Joint and crack sealing.
e Joint undersealing.

Both JPCP and JRCP were included in the study. The treatment sections on joint/crack

sealing test sites consisted of one section in which all joints had no sealant and one in which a
watertight seal was maintained on all cracks and joints. Undersealing was included as an optional
experiment factor and was performed only on the sections in which the need for undersealing
was indicated.

As originally designed, the matrix of cells for this experiment could not be filled out because
some agencies were unwilling to provide sites for the SPS-4 study. A primary concern was the
use of undersealing as a preventive maintenance treatment. Therefore, the SPS-4 study was
modified to allow agencies to participate in installation of sections with joint/crack sealing and
undersealing, joint/crack sealing only, or undersealing only. As a result, the standard experiment
layout included a test section with silicone sealant and a control section with unsealed joints. In
addition, separate undersealed test sections were constructed at eight test sites.

The final experiment design for SPS-4 was reduced to the following factors for JPCP:
e Climatic zone: Temperature and moisture.
e Subgrade type: Fine-grained and coarse-grained.
e Subbase type: Granular and stabilized.
For JRCP, only the wet moisture level was considered.
The SPS-4 experiment included 35 sites in the United States and Canada during 1990 and

1991 and 1 site in Colorado in 1995. Table 8 shows SPS-4 experimental factorials using
as-built information.
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Table 8. SPS-4 experimental design.

Freeze No-Freeze
Experimental Factors Fine Subgrade Coarse Subgrade Fine Subgrade | Coarse Subgrade
Wet De_n_se 19-A400| 19-B400| 40-A400
Stabilized| 18-A400| 21-A400| 39-A400| 39-B400| 48-A400
46-A400 6-B400| 8-A400 4-A400| 6-A400
Plain Dense 31-B400| 32-A400 48-C400
Dry 49-C400| 49-D400
49-E400
Stabilized| 31-A400| 31-C400
Dense 29-A400| 29-B400 5-A400| 5-B400
Wet 42-A400| 42-C400 48-E400
Reinforced Stabilized >-C400] 28-A400
48-B400| 48-D400
Dry Dens'e' 20-B400
Stabilized | 20-A400

Note: The numbers in each cell represent the State code followed by the site ID. Blank cells indicate that data are not available.

By March 1, 2006, all SPS-4 sites were deassigned from the experiment. The LTPP database

contains information for 79 core SPS-4 sections.

SPS-5 EXPERIMENT

Experiment Design

The objective of the LTPP SPS-5 experiment was to help develop improved methodologies and
strategies for the rehabilitation of flexible pavements. The experiment was designed to evaluate
common rehabilitation techniques currently implemented in the United States and Canada. The

factors considered in the experiment included the structural and functional condition of the
pavement before overlay, the environmental and traffic loading of the test sections, and the
various treatment applications.

The SPS-5 experiment provides a means to compare rehabilitated HMA pavement performance
using different surface preparation intensities, overlay thicknesses, and overlay mixtures. It also
can be used to determine the appropriate timing of rehabilitation and to evaluate the life-cycle

cost of different rehabilitation actions.

The experiment was designed to compare the effect of the following variations on performance

of rehabilitated pavements:

e Climatic zone: Wet versus dry and freeze versus no-freeze.

e Existing pavement condition: Fair versus poor.

e Surface preparation: Intense versus minimum.
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e Overlay material: Recycled versus virgin HMA.
e Overlay thickness: Thin 2 inches (51 mm) versus thick 5 inches (127 mm).

Variation of surface preparation alternatives, overlay material, and overlay thickness led to eight
design combinations at each SPS-5 site (see table 9). One additional section was assigned as a
control section and did not receive any overlay, except for routine maintenance, for a total of
nine experimental sections. All test sections were designed to be 500 ft (152.4 m) long over a
fine-grained subgrade with minimum annual traffic over the test sections of 85,000 equivalent
single axle loads (ESALS).

Table 9. Core sections of SPS-5 experiment.

LTPP ID Overlay Type

0501 Control: No treatment

0502 Thin overlay (2 inches): Recycled HMA mix

0503 Thick overlay (5 inches): Recycled HMA mix

0504 Thick overlay: Virgin mix

0505 Thin overlay: Virgin mix

0506 Thin overlay: Virgin mix with milling

0507 Thick overlay: Virgin mix with milling

0508 Thick overlay: Recycled mix with milling

0509 Thin overlay: Recycled mix with milling
linch =254 mm

Final Factorial of SPS-5 Experiment

A total of 18 SPS-5 projects were constructed between 1989 and 1998. The as-built status of the
SPS-5 design factorial is shown in table 10. All projects are located in the appropriate cells based
on the actual environmental data. Additionally, all of the cells have at least two projects except
for the wet no-freeze fair condition and the dry freeze poor condition. A total of 210 test sections
(162 core test sections plus 48 supplemental sections) were built as part of the SPS-5 experiment.
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Table 10. Constructed SPS-5 sites for the experimental factorial.

Climate, Moisture/Temperature
Pavement Soil Wet Wet Dry Dry
Condition | Classification Freeze No-freeze Freeze No-freeze
Coarse/fine Georgia Colorado
Alberta,
Fair Coarse New Canada New_
Jersey Montana Mexico
Fine _ Oklahoma
Minnesota | Texas
Coarse/fine Manitoba, . .
Canada California
Poor Coarse . Florida .
Maine Alabama Arizona
. Maryland
Fine Missouri | Mississippi

Note: Blank cells indicate data are not available.

One major deviation from the original SPS-5 experimental plan was the subgrade soil type.
Originally, the subgrade soils for all SPS-5 projects were supposed to be fine-grained soils. Only
six of the SPS-5 projects actually had fine-grained soils. Four SPS-5 projects had soils that
varied between fine and coarse grained. The subgrade soils for the remaining eight SPS-5
projects were classified as coarse grained.

SPS-6 EXPERIMENT
Experimental Design

The goal of the SPS-6 experiment was to develop improved methodologies and strategies for the
rehabilitation of concrete pavements. The experiment was designed to investigate the effects of
the specific experimental rehabilitation design features on pavement performance.

The factors considered in the experiment were overlay thickness, various restoration activities,
and site conditions such as existing pavement condition, subgrade soil, traffic, and climate. The
interactions of these factors also were considered.

The SPS-6 experiment included both JPCP and JRCP. The experiment design examined the
effects of the following factors:

e Climatic zone: Wet versus dry and freeze versus no-freeze.
e Pavement condition: Fair versus poor.
e Type of concrete pavement: JPCP versus JRCP.

e Overlay thickness: 4 inches (102 mm) versus 8 inches (203 mm).
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The SPS-6 experimental plans were originally designed to incorporate project sites in all four
LTPP climatic regions and on both fine- and coarse-grained subgrades. Every project constructed
as part of the SPS-6 experiment had eight core pavement sections that represented eight different
rehabilitation alternatives. These rehabilitation alternatives included variations in pavement
preparation, restoration, AC overlay thickness, and additional treatments (saw and seal and crack
and seat).

Table 11 lists the eight core experiment sections required for an SPS-6 project. Each section
varies by a combination of the extent of pavement preparation, other treatments (saw and seal of
the AC overlay and crack and seat), and the overlay thickness. It was also required that at least
six of